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ABSTRACT 

We apply a technique developed in the field  of  vec- 
tor quantization to  the problem of unsupervised classi- 
fication of radar imagery of wetlands. The method can 
perform better  than traditional unsupervised methods, 
such as k-means, because it performs soft classification 
at each step. The method is applied to  Alaska data and 
shown to give results that  are similar to previous results 
using supervised classification.  Results are also shown 
for data from Belize. 

INTRODUCTION 
Synthetic aperture  radar ( S A R )  has been shown to be 

sensitive to vegetation type and to presence or absence 
of surface water El]-[3]. Such information is  useful  in 
understanding  the ecology of wetland  areas  and the im- 
pact of seasonal flooding.  Because of the high correla- 
tion of vegetaion type and presence of standing water 
with  the  methane exchange rate in boreal wetlands [41, 
SAR may  also  be  useful  in distinguishing between land 
cover classes of differing methane exchange rates. This 
application is examined in [3] using supervised classi- 
fication methods. In general, good results have been 
obtained in applying supervised methods to classifica- 
tion of radar  data. Unfortunately,  in practice it  is  of- 
ten difficult to  obtain suitable training data. This leads 
us  to explore the use of unsupervised methods. Work 
in this area  has already been done using a variety of 
methods [SI, [6]. The method presented here is based 
a method used in vector quantization, in which one 
looks for optimal codebooks to  represent  data. Specif- 
ically one wishes to find a set of code vectors which 
can adequately represent the data. The problem is es- 
sentially that of finding clusters whose mean best repre- 
sents  the input data. This problem is identical to un- 
supervised radar classification and  the methods from 
vector quantization can be applied directly We first 
review the  method and discuss its implementation for 
SAR imagery We then  demonstrate  the results on data 
published in [3], which were classified using supervised 
methods. We also show application of the unsupervised 
approach to data acquired in Belize, Central America. 

SEGMENTATION METHOD 

One of the simplest methods for segmentation of data 
into classes  or clusters is the k-means algorithm. This al- 

gorithm assumes some initial class parameters  and  then 
classifies the  data accordingly Given the classes, the 
class parameters  are re-.computed. These two steps are 
repeated until convergence. A related algorithm is the 
self-organizing feature map (SOFM), which is a type of 
neural network [7]. In the  general unsupervised clas- 
sification problem, we are presented with data samples 
z(n), where z is a vector representing the  radar mea- 
surements at each pixel.  In the SOFM technique the 
class mean vectors wj are initialized to  random values; 
j is the class index and ranges over the expected num- 
ber of classes. At each step we determine  the distance 
I.(.) - wj(n)l for all j. The w j  with  the minimum dis- 
tance wins. The winning w and those in its neighbor- 
hood A are  updated according to 

wj(n  + 1) = wj(n )  + ~ ( z ( n )  - ~ j ( n ) )  j6A (1) 

where 77 is a learning rate parameter. When the neigh- 
borhood size is reduced to 1, only the winning vector 
is updated. In this case SOFM reduces to the k-means 
algorithm [ 71. 

Both the k-means algorithm and  the SOFM perform a 
hard classification at each iteration, meaning that each 
sample is  classed as one  and only one of the classes  ex- 
isting at  that step. Better results may  be obtainable by 
using so-called soft  classification,  in which each sample 
can have more than one class or a combination of  class 
characteristics associated with it. In the Soft Competi- 
tion Scheme (SCS) [SI the SOFM is modified in that a 
winner is not chosen.  Rather, the class vectors w for all 
j are  updated according to 

wj(n + 1) = wj(n) + vj(n)pn(j)(x(n) - w(n)) (2) 

where P,(j) is the probability that z(n) belongs  to  class 
j. This probability is estimated from Iz(n) - wj(n)l as 
also used in the SOFM: 

where  the index of the sum k runs from 1 to the number 
of classes. Equation (3) is a Gibbs distribution where 
P(n) is a parameter analogous to  the inverse tempera- 
ture. As the algorithm is applied, p is gradually raised, 
lowering the temperature. In (2) the learning rate pa- 
rameter is  no  longer a constant but varies with both the 
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class and the time step. Details of the implementation 
of this method are given  in [8]. The primary advantage 
of the method is that all  class vectors w are  updated for 
each z rather  than only the winner.  Those 2 that  are 
closer  to a particular w have a larger effect on it during 
the update through the probability P n ( j ) .  Early  in the 
procedure when p is small, the probabilities weak func- 
tions of the class j .  This keeps the method from getting 
stuck in a local minimum. As p increases, the probabil- 
ities become stronger functions of the class j ,  and as p 
becomes very large the method approaches hard classi- 
fications. 

Following the completion of the SCS, we have clusters 
of radar  data. The mean and variances are computed for 
each cluster, or class. At this point we have information 
equaivalent to  that  at  the  start of a supervised classifi- 
cation; that is, we have the characteristics of the classes 
present in the image.  The only difference is that we do 
not have a name to go with  each class.  Since the class 
name is need only for interpretation, we proceed with 
a supervised classification  using the results of  SCS.  In 
our case  we  use the same supervised classifier as used 
in [3]. This  classifier  uses the Maximum a Posteriori 
(MAP) statistical classifier,  which  maximizes the proba- 
bility density function (PDF) p(LIX) of the pixel  labels 
L conditioned on the  radar observations X .  In  [3] sim- 
ulated annealing was used for the solution. Here, we 
have used the  interated conditional modes (ICM) [9]. 
The final result of the  method is a set of classes with 
know mean and variance and and image  classified ac- 
cording to these class characteristics. We can  then use 
external information, such as maps, to apply names to 
the classes. I t  might also  be  possible to use experimen- 
tal or modeling data to determine the type of terrain, 
given the class scattering charactersitics. 

DATA DESCRIPTION 

The northern wetlands data used  in this study were 
acquired over  Minto  Flats,  Alaska, on 18 July 1993, us- 
ing the NASMJPL DC-8 AIRSAR polarimetric SAR.  Be- 
cause of severe interference at P-band, only L-band and 
C-band data were used in this study The data have been 
averaged to 64 looks, to reduce speckle noise, result- 
ing  in a spatial resolution of approximately 50 m. The 
time of the data acquisition was near  the peak, mid- 
summer growing season. Land  cover within the study 
area can be divided into four classes: forest, bog, wa- 
ter, fen. The methane  rate varies substantially with the 
class, with  the highest methane emissions from inun- 
dated fens and lowest from forests, which are actually 
weak methane sinks [3]. The  classification is based on 
both the like and cross-polarized data (LHH, LH\! CHH, 
and 0 .  A second AIRSAR data acquisition over Be- 
lize, Central America  is also classified here. These data 
were acquired in  March 1990  and include rainforest and 

some wetlands. These data have undergone averaging 
like the Alaska data. The data classified here were ac- 
quired in an  area adjacent to data presented in [lo]. 
The  classification  uses the HH polarized data at P-,  L-, 
and C-bands. 

CLASSIFICATION RESULTS 

The method was applied to the Alaska data using the 
same number of  classes as used in the supervised case 
in [3]. The classification results are shown in  Fig. 1 
and are quite similar to those in [3]. As noted above, 
the unsupervised method does not provide a name for 
the class, only its characteristics, along with the classi- 
fied  image. By comparing Fig. 1 with  the results in [3], 
it was obvious  which classes n Fig. 1 corresponded to 
those in [3]. The  labels for Fig. 1 use the results of 
this comparison. In examining Fig. 1, the white areas 
are of particular interest since they correspond to  the 
high methane producing fen areas. These are shown in 
white. The open water  areas  are also well separated. 
The  bog and forest areas, are less well separated; how- 
ever, these were difficult  to separate in  [31  using su- 
pervised methods. Table 1 shows the backscatter ( T O  

characteristics of the classes found by the unsupervised 
method. They compare quite well with the  radar char- 
acteristics used  in training for the supervised methods 
in [3].. 

For the Belize data  the number of classes was nor 
known a priori, and so results were obtained for several 
numbers (3-5). Results appeared best  using 4 classes 
and are shown in  Fig. 2.  The  classification results were 
compared with maps of the  area  to determine the type 
of vegetation corresponding to the class.  The  light  gray 
area in Fig. 2 is likely flooded reeds. These areas had 
very  low  P-band return (-22 dB ( T O )  and very high C- 
band return ( (TO of -2 dB). Apparently the reeds were 
substantially shorter than  the P-band wavelength of 68 
cm. Hence, at P-band the  area looks  like open water 
and has low  backscatter. At C-band the reeds must have 
length at least that of the C-band signal (5 cm). In- 
teraction between the  reeds and water surface provides 
a large backscatter, such as seen in  flooded  rice  fields 
[ll]. The other areas in Fig. 2 are similar to each other 
in terms backscatter characteristics and probably corre- 
spond to forest with varying degrees of surface water. 

CONCLUSIONS 

We have applied a vector quantization method to un- 
supervised classification of radar imagery.  The method 
uses soft classification at each step and is  less  likely 
to get stuck in  local minima during  the classification 
process than methods using hard classification. We 
found results similar  to supervised methods for  imagery 
containing Alaskan wetlands. The method also pro- 



vided  useful  classification for data acquired over Central 
America. 
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Table 1. Alaskn C l x s  Characteristics ( d ’  in dB) 
Class LHH L H V  CHH CHV 
Forest -8 -15 -6 -12 

Water -25 -35 -21 -30 
Fen -15 -23 -7 -1s 

Bog -10 -17 -6 -13 

Figure 1. Unsupervised  classification of  LHH, Lw 
CHH, CHV imagery over  Alaska.  Black  is forest and tall 
shrub. Dark  gray is  bog.  Light gray is open water, and 
white is fen. Image dimension is 8.4 km by 4.9 km. 

Figure 2. Classification of PHH, LHH, and CHH cross 
section measurements in  Belize, Central America.  Im- 
age dimension is 8.4 km  by 5.4 km. 


